EJEMPLO 4 Un sólido de revolución (rotación alrededor del eje x)

La región entre la curva $y = \sqrt{x}$, $0 \leq x \leq 4$, y el eje x se hace girar alrededor del eje x para generar un sólido. Determinar su volumen.

Solución Dibujamos figuras que muestren la región, un radio típico y el sólido generado (figura 6.8). El volumen es

$$V = \int_{a}^{b} \pi [R(x)]^2 \, dx$$

$$= \int_{0}^{4} \pi [\sqrt{x}]^2 \, dx$$

$$= \pi \int_{0}^{4} x \, dx = \pi \left[\frac{x^2}{2} \right]_{0}^{4} = \pi \left(\frac{4^2}{2} \right) = 8\pi.$$

EJEMPLO 5 Volumen de una esfera

La circunferencia

$$x^2 + y^2 = a^2$$

se hace girar alrededor del eje x para generar una esfera. Determinar el volumen de esta última.
Solución Imagine que cortamos la esfera en delgadas rebanadas por medio de planos perpendiculares al eje x (figura 6.9). El área de la sección transversal en un punto representativo x, entre $-a$ y a es

$$A(x) = \pi y^2 = \pi (a^2 - x^2).$$

Por lo tanto, el volumen es

$$V = \int_{-a}^{a} A(x) \, dx = \int_{-a}^{a} \pi (a^2 - x^2) \, dx = \pi \left[a^2 x - \frac{x^3}{3} \right]_{-a}^{a} = \frac{4}{3} \pi a^3.$$

FIGURA 6.9 La esfera generada por la rotación de la circunferencia $x^2 + y^2 = a^2$ alrededor del eje x. El radio es $R(x) = y = \sqrt{a^2 - x^2}$ (ejemplo 5).
Cálculo de volúmenes por el método de los discos

13. Alrededor del eje x.

15. Alrededor del eje y.

16. Alrededor del eje x.

En los ejercicios 17 a 22, determine los volúmenes de los sólidos generados al hacer girar las regiones acotadas por las rectas y curvas alrededor del eje x.

17. \(y = x^2, \quad y = 0, \quad x = 2 \)

18. \(y = x^3, \quad y = 0, \quad x = 2 \)

19. \(y = \sqrt{9 - x^2}, \quad y = 0 \)

20. \(y = x - x^2, \quad y = 0 \)

21. \(y = \sqrt{\cos x}, \quad 0 \leq x \leq \pi/2, \quad y = 0, \quad x = 0 \)

22. \(y = \sec x, \quad y = 0, \quad x = -\pi/4, \quad x = \pi/4 \)